A powerful veto for gravitational wave searches

نویسنده

  • T Ballinger
چکیده

The use of vetoes generated from auxiliary channels suppresses most of the high amplitude noise triggers that impair gravitational wave (GW) burst and binary inspiral searches. During Virgo’s first scientific run (VSR1), many of the remaining loud burst and inspiral Virgo triggers were observed with nearly equal significance in both the in-phase (ACp) and quadrature (ACq) interferometer output channels, while we expect the ACq channel to be insensitive to a GW signal. We describe a veto based on the ratio of the amplitude of the ACp and ACq signals. From studying hardware signal injections, we demonstrate that the ratio of the amplitude of coincident ACp and ACq triggers can be safely used to define a veto; we show its efficiency for the burst and binary inspiral analyses of the VRS1 data. PACS numbers: 04.80.Nn, 07.05Kf (Some figures in this article are in colour only in the electronic version)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Used percentage veto for LIGO and virgo binary inspiral searches

A challenge for ground-based gravitational wave detectors such as LIGO and Virgo is to understand the origin of non-astrophysical transients that contribute to the background noise, obscuring real astrophysically produced signals. To help this effort, there are a number of environmental and instrumental sensors around the site, recording data in “channels”. We developed a method called the used...

متن کامل

The LSC glitch group: monitoring noise transients during the fifth LIGO science run

The LIGO Scientific Collaboration (LSC) glitch group is part of the LIGO detector characterization effort. It consists of data analysts and detector experts who, during and after science runs, collaborate for a better understanding of noise transients in the detectors. Goals of the glitch group during the fifth LIGO science run (S5) included (1) offline assessment of the detector data quality, ...

متن کامل

Coherent Network Detection of Gravitational Waves: The Redundancy Veto

A network of gravitational wave detectors is called redundant if, given the direction to a source, the strain induced by a gravitational wave in one or more of the detectors can be fully expressed in terms of the strain induced in others in the network. Because gravitational waves have only two polarizations, any network of three or more differently oriented interferometers with similar observi...

متن کامل

Searching for stochastic gravitational-wave background with the co-located LIGO interferometers

This paper presents techniques developed by the LIGO Scientic Collaboration to search for the stochastic gravitational-wave background using the co-located pair of LIGO interferometers at Hanford, WA. We use correlations between interferometers and environment monitoring instruments, as well as time-shifts between two interferometers (described here for the first time) to identify correlated no...

متن کامل

Searching for Gravitational-Wave Bursts with LIGO

We present recent results from searches by the LIGO Science Collaboration for bursts of gravitational-wave radiation, as well as the status of other ongoing searches. These include directed searches for bursts associated with observed sources (gamma-ray bursts, soft gamma repeaters) and untriggered searches for bursts from unknown sources. We also present the status of some newer investigations...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009